Strategy: Cold, Warm, Hot Data Storage & Data Warehouse vs Data Lake Architecture

Ya por aquí hemos hablado, y mucho, de #Data-Pipeline o #Data-Streaming. Por ejemplo fue el caso del Banco ING Direct, donde a partir de una Pipeline podían extraer el fruto y conectar su proceso de datos basado en #Real-Time con su reporting o sus bases de datos más operacionales. También hemos hablado de CQRS, que no es lo mismo que la construcción de Pipeline basadas en #Real-Time sinó, basadas en un método para optimizar escrituras en bases de datos (write) y leerlas (read). [Leer más]

Real-Time: Data Streaming

Desde hace ya un tiempo que vamos hablando sobre #Data-Streaming, publicando casos reales como el de ING Direct. Aunque hoy queremos hacer una “review” general para ir enfocando próximos capítulos ya que, más que nunca, está de “moda” el tener Real-Time en nuestras plataformas de analítica. Por ejemplo en el caso anterior, del Banco ING, podemos ver como las transacciones online que están realizando sus clientes, rápidamente, están disponibles para sus equipos de Customer Support, vital para una eficiente atención al cliente. [Leer más]

Replicando datos en tiempo real (Log Shipping vs Mirror Data)

Hemos hablado bastante sobre “Stream Processing”, “Data Stream”, “Distributed Real-Time Stream Processing”, “Data Sharding”, etc… pero, por lo general, siempre contamos con que tendremos una fuente de datos lo suficientemente preparada como para poder coger los datos y convertirlos en procesos o streams. Pero, seamos sinceros, raramente pasa. Es por eso que tenemos soluciones interesantes cuando, por ejemplo, tenemos una base de datos SGBD (puede ser Oracle o SQLServer) y queremos realizar una réplica de la base de datos origen hacia un destino. [Leer más]